Bjerknessenterets mål er å forstå klima
til nytte for samfunnet.

#Polar Climate

12 results

Sjøis styrer ikke vinterværet

Sjøis styrer ikke vinterværet Ellen Viste tor, 09/30/2021 - 12:54 Sjøis styrer ikke vinterværet Det er mindre sjøis enn normalt i Arktis nå i september. De siste tiårene har lite is om høsten vært forbundet med kalde vintre. En ny studie viser at vi likevel kan vente med å forberede oss på frostnetter og skiføre.

Om du hadde flydd over Polhavet akkurat nå, ville du sett mer åpent hav under deg enn normalt. September er måneden da isdekket er på sitt minste, fordi sommeren er over og høsten ennå ikke riktig har fått tak. I år er det i tillegg mindre is enn i en gjennomsnittlig septembermåned.

Om dette året skulle følge mønsteret fra de siste tiårene, ville lite sjøis gi oss grunn til å forberede oss på en kald vinter. Mange år med lite sommeris har vært fulgt av lange kuldeperioder i Europa, Sibir og Nord-Amerika. Men forskning antyder at erfaringene våre er av begrenset nytte.

Peter Siew
Peter Siew har forsøkt å finne ut om sammenhengen man har sett mellom lite sjøis og kalde vintre er reell eller en tilfeldighet. Foto: Yongbiao Weng

– Lite sjøis forårsaker ikke kalde vintre, sier Peter Siew.

Siew har ledet en ny studie av sammenhengen mellom sjøis og lavtrykksbaner over Nord-Atlanteren. Arbeidet har vært en del av doktorgraden hans ved Bjerknessenteret og Universitetet i Bergen.

Resultatene viser at sjøisdekket i nord neppe har noe å si for vinterværet lengre sør. At det er lite is nå, vil ikke gjøre det kaldere i januar. I den grad isen og vinterværet henger sammen, er det ikke fordi isen påvirker været, men fordi de begge påvirkes av de samme forholdene i atmosfæren om høsten.

Mange kalde vintre etter lite is

Arktis varmes opp raskere enn noen annen del av kloden, og de siste årene har det vært forsket mye på om dette vil kunne få konsekvenser for været i Nord-Amerika, Europa og Sibir. Studier av langsiktige endringer har også belyst hvordan vær og is varierer fra år til år.

Observasjoner fra de siste førti årene kan gi inntrykk av at det er en sammenheng mellom isutbredelsen i Arktis og stormbanene over Nord-Atlanteren. Lite sjøis om høsten har vært fulgt av vintre der lavtrykkene har fulgt sørlige baner innover Sør- og Mellom-Europa. I nord har været vært kaldt og klart i uker av gangen. Motsatt har høstmåneder med mye is vært fulgt av milde vintre, der lavtrykk etter lavtrykk har duret inn i Norskehavet.

Hvis det alltid var slik, burde det være mulig å bruke isforholdene om høsten til å varsle vinterværet. Slike sammenhenger gir håp om sesongvarsler av været flere måneder i forveien, nyttige enten man skal planlegge energiproduksjon, vareinnkjøp eller brøyting av veier.

Men for å kunne bruke det man har observert til å forutsi fremtidsværet, må man vite hva som ligger bak. I første omgang må man også vite at man har sett rett.

Camille Li
Camille Li forsker på hvordan ulike forhold påvirker stormbanene over Nord-Atlanteren og innover Europa. Foto: Privat

Camille Li, professor ved Bjerknessenteret og Geofysisk institutt ved Universitetet i Bergen, forsker på stormbaner og har også deltatt i studien av sjøisen og været.

– Observasjonene kan ikke være gale, sier hun. – Men tolkningen av dem kan.

At kalde vintre har etterfulgt lite is, trenger ikke å bety at det er isforholdene som har gjort vintrene kalde.

Lite is også i år

Etter årets sommer er det lite, men ikke ekstremt lite, sjøis i Arktis. Regnskapet er ennå ikke oppgjort, men amerikanske National Snow & Ice Data Center anslår at isutbredelsen vil ende som den tolvte laveste som er registrert. Sammenlignet med det siste tiåret, ligger 2021 høyest. Sammenlignet med 1981–2010, er det likevel bare tre fjerdedeler så mye sjøis i år som det normalt har vært.

Barentshavet og Karahavet, som forskerne så på i denne studien, er normalt isfrie om sommeren. Men lite is ellers i Arktis kan gjøre at havet vanskeligere fryser til utover høsten, også der.

Når det er mindre is og mer åpent hav, overføres mer varme og fuktighet fra sjøen til atmosfæren. Ingen tviler på det. Spørsmålet er om effekten er stor nok til å endre været flere måneder senere og så langt sør som i Europa.

Klimamodellene frustrerer

For å utforske hva som foregår når ulike fenomener påvirker hverandre – som i tilfellet med isdekket og været – bruker forskerne klimamodeller. I modellene får forhold i havet og atmosfæren utvikle seg slik fysikkens lover bestemmer at de skal. Hvis resultatet stemmer med det man har observert, kan man normalt feste lit til at modellene representerer virkeligheten.

I dette tilfellet har én ting frustrert mange klimaforskere. Sammenhengen mellom sjøis og vintervær, observert i den virkelige verden de siste førti årene, har ikke vært mulig å finne igjen i klimamodellene. I modellene varierer sjøisen og vinterværet fritt og uavhengig av hverandre.

Isdekket og vinterværet har unektelig vært virkelig. Det har fått mange til å lure på om klimamodellene gjør noe galt akkurat på dette feltet.

Svaret ligger i tiden. Hvilke tiår man tar i betraktning, påvirker hva man ser.

Førti år er for lite

Siden slutten av 1970-tallet har satellitter jevnlig overvåket jordoverflaten. Det har revolusjonert oversikten over isforhold og vær. Derfor er det fristende å begrense seg til denne tiden når man skal analysere klimaet.

– Alle skjønner at ett år er for lite til å si noe om klimaet, sier Camille Li. – Men man trodde førti år var nok.

Det var det ikke.

Da forskerne gikk lengre bakover i tid, fra førti til hundre år, endret bildet seg. Sammenhengen de hadde observert mellom sjøisen i nord og stormbanene i Europa, forsvant. De førti siste årene viste seg å være et unntak.

– Jeg mener ikke å si at førti år er for kort til alt, utdyper Camille Li.

Hvis man vil beregne jordens gjennomsnittstemperatur, holder det med førti år. Men hvis man vil forstå kompliserte mekanismer, som sammenhengen mellom isdekket om høsten og vinterværet et annet sted i verden, trenger man data over lengre tid.

I et enkeltår eller noen tiår er det for vanskelig å skille betydningen av ulike fenomener for været. Små variasjoner kunne gitt helt andre utfall enn det vi har sett de siste førti årene.

En av Peter Siews tidligere studier demonstrerer noe av årsaken til dette. Når man skal lage værvarsler, kjører man de samme datamodellene mange ganger med små endringer i utgangspunktet. Det gjør det mulig å si noe om sannsynligheten for at utviklingen skal gå i ulike retninger.

Virkeligheten kan sammenlignes med én enkelt av disse modellsimuleringene. Utviklingen kunne ha gått i en annen retning enn den har gjort.

Hundre år ga andre resultater

Da Peter Siew og kollegene gikk fra førti år til hundre, forsvant problemet de trodde klimamodellene hadde. Sett over en hundreårsperiode, var det fullt samsvar. Verken observasjonene eller modellene viste noen sammenheng mellom sjøisen i Arktis om høsten og vinterværet i Nord-Amerika og Eurasia.

Også andre forhold i atmosfæren og havet var de samme. Dermed kunne de avvise at modellene gjorde noe galt. At koblingen fra sjøisen til vinterværet er upålitelig, har vært vist tidligere, så dette er det viktigste bidraget fra den nye studien.

Hvor kom da sammenhengen mellom is og vær de siste førti årene fra? Den som ikke finnes hvis man ser det siste hundreåret under ett, men som tilsynelatende har gitt oss så mange kalde vintre de siste tiårene?

– Tilfeldigheter, sier Peter Siew.

Han viser til at været varierer kaotisk og at luften er flyktig. I de fleste tiår varierer isen og været uavhengig av hverandre, i de siste førti fulgte de tilfeldigvis samme mønster.

Helt tilfeldig var det kanskje likevel ikke.

Høytrykk bak både lite sjøis og vinterkulde

Noen år bygger det seg opp sterke høytrykk over Uralfjellene. De kan bli liggende lenge og blåser varm luft sørfra mot isen i Barentshavet og Karahavet. Mildværet kan gjøre at sjøen i mindre grad fryser til utover høsten. Da vil det være lite sjøis i november, som er den måneden forskerne brukte observasjoner fra til denne studien.

Peter Siew og kollegene støtter en teori om at slike høytrykk over Ural også gir opphav til kalde vintre. Bølger i luften over høytrykket kan påvirke forholdene i stratosfæren, mer enn en mil over bakken.

Stefan Sobolowski
Stefan Sobolowski er skeptisk til å bruke enkeltfenomener til å forutsi været flere måneder frem i tid. Foto: Suet Chan

Høyt der oppe blåser en sterk virvel av vestavind rundt Nordpolen. Når den forstyrres, kan det påvirke stormbanene lengre sør. Når virvelen i stratosfæren blir svakere, vil vinterværet ofte holde seg stabilt kaldt i lang tid.

Slike sammenhenger gjør det mulig å varsle været for de neste månedene, skjønt ikke like detaljert som i værvarsler for den kommende uken. Man kan anslå sannsynligheten for at det vil bli våtere eller tørrere og varmere eller kaldere enn normalt.

Selv da er det grunn til å være forsiktig. Stefan Sobolowski er forsker ved Bjerknessenteret og NORCE, og har deltatt i den nye studien. Gjennom senteret Climate Futures er han også med på å utarbeide sesongvarsler i praksis.

– Jeg ville verken bruke sjøisen eller høytrykket over Ural til å varsle vinterværet, sier han.

Et sett av vintre å velge mellom

Et blokkerende høytrykk over Ural kan være et forvarsel, men kan ikke forklare mer enn en liten del av variasjonene i vinterværet. Andre forhold kan overstyre signalene til og fra stratosfæren.

Fremfor statistikk og enkle sammenhenger brukes derfor datamodeller som beregner værutviklingen ved hjelp av fysiske lover.

Som i værvarsling, kjøres modellene mange ganger for å gjøre det mulig å vurdere sannsynligheten for at været skal utvikle seg i ulike retninger. Det gir et sett av mulige vintre, og hvis mange av dem er kalde, kan man anta at sannsynligheten er høy for at den kommende vinteren vil bli nettopp det.

September er uansett for tidlig. Stefan Sobolowski vil ikke engang gjette på om vinteren vil bli kald, mild, tørr, våt eller snørik.

– Ikke gå og kjøp en ekstra tykk dyne ennå, sier han.

Kanskje i november

Selv om sjøisen ikke påvirker vinterværet, kan andre slike sammenhenger gjøre været mer forutsigbart. Stefan Sobolowski mener det er god grunn til å tro at det finnes koblinger vi ennå ikke kjenner, og at de i fremtiden vil gjøre sesongvarslene bedre.

Først i januar vil vi med sikkerhet få vite hvordan januarværet blir. Men et forvarsel om årets vintervær håper han å kunne gi oss senere i høst.

– Spør meg igjen i slutten av november!

 

Se det nyeste sesongvarselet her.

 

Referanser

P. Y. F. Siew, C. Li, M. Ting, S. P. Sobolowski, Y. Wu, X. Chen, North Atlantic Oscillation in winter is largely insensitive to autumn Barents-Kara sea ice variability. Sci. Adv. 7, eabg4893 (2021)
https://advances.sciencemag.org/content/7/31/eabg4893

Siew, P. Y. F., Li, C., Sobolowski, S. P., and King, M. P.: Intermittency of Arctic–mid-latitude teleconnections: stratospheric pathway between autumn sea ice and the winter North Atlantic Oscillation, Weather Clim. Dynam., 1, 261–275, https://doi.org/10.5194/wcd-1-261-2020, 2020.

Kolstad, E. W., & Screen, J. A. (2019). Nonstationary relationship between autumn Arctic sea ice and the winter North Atlantic oscillation. Geophysical Research Letters, 46, 7583– 7591. https://doi.org/10.1029/2019GL083059

Havnivåstigning fra smeltevann kan begrenses til det halve

Havnivåstigning fra smeltevann kan begrenses til det halve Ellen Viste tir, 05/04/2021 - 13:30 Havnivåstigning fra smeltevann kan begrenses til det halve Begrenses global oppvarming til 1,5 grader, halveres landisens bidrag til havnivå i dette århundret.

I en studie publisert i tidsskriftet Nature i dag utforskes landisens bidrag til havnivåstigning i det 21. århundret. Smelting fra verdens breer samt innlandsisene på Grønland og i Antarktis er tatt med.

En internasjonal forskergruppe har beregnet at havnivåstigningen fra issmelting kan halveres dette århundret hvis vi oppfyller Parisavtalens mål om å begrense oppvarmingen til 1,5 grader. Til sammenligning vil de utslippene landene har forpliktet seg til nå, kunne gi en oppvarming på 2,8 grader.

– Vi har samlet bidraget fra breer og innlandsis i ulike deler av verden, sier Heiko Goelzer, som er forsker ved Bjerknessenteret og NORCE. – Tidligere er disse kildene studert hver for seg.

Heiko Goelzer har hatt ansvar for fremskrivningene av smeltevann fra Grønlandsisen i tidligere studier og i denne. Arbeidet ble ledet av Tamsin Edwards ved King’s College i London.

Studien kombinerer en rekke datamodeller med statistiske teknikker til å lage projeksjoner for de nyeste sosioøkonomiske scenarioene. Dette er de samme scenarioene som vil bli brukt i FNs klimapanels sjette hovedrapport, som skal komme senere i år.

Reduserer istap alle steder

Forskningen tilsier at å begrense den globale oppvarmingen til 1,5 grader, vil redusere istapet fra Grønlandsisen med 70 prosent og fra verdens breer med 50 prosent, sammenlignet med de utslippsreduksjonene verdens land har forpliktet seg til så langt.

Forskjellen tilsvarer en reduksjon i havnivåstigning fra 25 til 13 centimeter.

For Antarktis tilsvarer fremskrivningene av istap fire centimeters global havnivåstigning, uavhengig av utslippsscenario. Det skyldes at det foreløpig er uklart om mer snø i det kalde innlandet vil veie opp for mer smelting ved kysten. Men i et pessimistisk scenario med mer smelting enn snø, vil istapet i Antarktis kunne bli fem ganger så stort.

Krever ambisiøse forpliktelser

I en pressemelding fra King’s College sier Tamsin Edwards:

«Foran COP26 i november vil mange land oppdatere sine løfter om å redusere drivhusgassutslipp under Parisavtalen. Det globale havnivået vil fortsette å stige, selv om vi skulle stoppe alle utslipp nå, men vår forskning indikerer at vi kan begrense skaden. Hvis løftene var langt mer ambisiøse, kunne prediksjonene for havnivåstigning fra smeltende is reduseres fra 25 til 13 centimeter i 2100, med 95 prosent sjanse for å være mindre enn 28 centimeter, heller enn den nåværende øvre grensen på 40 centimeter. Det ville bety en mindre alvorlig økning i kystoversvømmelser.»

Breer og innlandsis står nå for omtrent halvparten av den globale havnivåstigningen. Resten skyldes i hovedsak at vannet utvider seg når det blir varmere.

Tamsin Edwards fortsetter:

«Vi brukte et større og mer sofistikert sett av klima- og ismodeller enn tidligere. Ved hjelp av statistiske teknikker kombinerte vi 900 simuleringer fra 38 internasjonale grupper for å forbedre vår forståelse av usikkerheten knyttet til fremtidsscenarioene. Antarktis er jokeren: uforutsigbar og kritisk for den øvre grensen av fremskrivningene. I et pessimistisk scenario finner vi at det er fem prosent sannsynlig at landisens bidrag til havnivået overskrider 56 centimeter i 2100, selv om vi begrenser oppvarmingen til 1,5 grader. Derfor må beredskapen overfor kystoversvømmelser være fleksibel nok til å kunne fungere for et større spenn i fremtidig havnivåstigning, til nye observasjoner og modeller kan gjøre Antarktis’ fremtid klarere.»

Referanse

Tamsin L. Edwards, Sophie Nowicki, Ben Marzeion, Regine Hock, Heiko Goelzer, Hélene Seroussi, Nicolas C. Jourdain, Donald A. Slater, Fiona Turner, Christopher J. Smith, Christine M. McKenna, Erika Simon, Ayako Abe-Ouchi, Jonathan M. Gregory, Eric Larour, William H. Lipscomb, Antony J. Payne, Andrew Shepherd et al. (2021): Projected land ice contributions to twenty-first-century sea level rise. Nature, 2021

Yngre dryas – et kaldt avbrekk i en tid med smelting

Yngre dryas – et kaldt avbrekk i en tid med smelting Anonymous (ikke bekreftet) man, 11/30/2020 - 14:42 Yngre dryas – et kaldt avbrekk i en tid med smelting Da isen etter forrige istid var begynt å smelte, snudde det plutselig og ble kaldere igjen. Jan Mangerud skriver om sin nye studie av kuldeperioden som kalles yngre dryas.

Av Jan Mangerud, professor emeritus ved Bjerknessenteret og Institutt for geovitenskap ved Universitetet i Bergen

Da istidens bre, som hadde dekket hele Norge, smeltet bort, kom det plutselig en uventet kald periode som vi kaller yngre dryas. Den startet brått med en klimaforverring for 12 800 år siden og sluttet like drastisk for 11 600 år siden, da klimaet på noen tiår ble nesten like varmt som i dag.

Slik vi kjenner drivkreftene for istidene, så skulle denne klimaforverringen ikke ha hendt. Den var forresten ikke global, den sydlige halvkule ble varmere. I en ny artikkel beskriver jeg noe av forskningshistorien for yngre dryas, blant annet hvordan den ble oppdaget i Danmark i 1901.

Kuldeperioden er oppkalt etter den vakre fjellblomsten reinrose, som på latin heter Dryas octopetala. Enda viktigere er det at jeg i artikkelen viser at yngre dryas sannsynligvis er del av det klimaforskere kaller en Dansgaard-Oeschger hendelse. Det er flere hypoteser for hvorfor vi fikk kuldeperioden yngre dryas, men hvis jeg har rett, så må de fleste, også de mest aksepterte, forkastes.

Referanse

Mangerud, J.  2020:  The discovery of the Younger Dryas, and comments on the current meaning and usage of the termBoreas, Vol.  00, pp.  1– 5. https://doi.org/10.1111/bor.12481. ISSN 0300‐9483.

Havets varmetransport inn i Arktis har økt

Havets varmetransport inn i Arktis har økt Ellen Viste man, 11/23/2020 - 17:15 Havets varmetransport inn i Arktis har økt Havet har fraktet mer varme inn i de nordlige havområdene etter 2001, viser en ny studie. Strømmen av vann inn i de nordiske hav er blitt både varmere og sterkere.

Varmetransporten fra Atlanterhavet og inn i de nordiske hav har vært sju prosent høyere etter 2001 enn den var på 1990-tallet. Det viser en studie publisert i tidsskriftet Nature Climate Change i dag. 

I de senere år har temperaturen i Polhavet og i de nordiske hav steget, samtidig som sjøisdekket har minket. Den observerte økningen i varmetransport er stor nok til å kunne forklare det meste av disse endringene.

Forskerne bak studien har satt opp et detaljert regnskap for alle strømmer inn og ut av Polhavet og de nærmeste havområdene fra 1993 til 2016. Resultatene viser en markant økning i transporten av varme inn i de nordiske hav mellom 1998 og 2002.

– At vanntemperaturen økte, var ikke så uventet. Men et så stort sprang på noen få år overrasket oss, sier Kjetil Våge ved Bjerknessenteret og Geofysisk institutt ved Universitetet i Bergen.

Våge er en av forskerne bak studien, ledet av hans tidligere kollega Takamasa Tsubouchi, som nå jobber ved Japans meteorologiske institutt. 

Årsaken til økningen i varmetransport skyldes både at mer vann har strømmet inn sørfra og at vannet er blitt varmere. 

Takamasa Tsubouchi
Takamasa Tsubouchi ledet studiet av varmetransporten nordover i havet mens han jobbet ved Bjerknessenteret og Geofysisk institutt ved UiB. Bildet er tatt under et tokt ved nordøstkysten av Grønland i 2016. Foto: Stephan Krisch

Volumregnskapet må gå opp

Sjøvannet følger én hovedrute inn i Polhavet. Ruten går gjennom de nordiske hav, der varmt Atlanterhavsvann fra Golfstrømmen fortsetter nordover på begge sider av Island. I tillegg strømmer kaldere vann nordover langs vestkysten av Grønland og fra Stillehavet inn gjennom Beringstredet, men disse havstrømmene er svakere og frakter mindre varme.

Ut igjen er det to hovedveier. Vannet strømmer sørover i dypet på begge sider av Island og nær overflaten på begge sider av Grønland. Hver av disse strømmene har flere greiner. 

Nå har forskerne for første gang tallfestet hvor mye varme havstrømmene frakter inn og ut av de nordlige havområdene, definert som Polhavet, de nordiske hav og havområdet mellom Nord-Amerika og Grønland.

Inn i og ut av området må det strømme like mye vann. I perioder da det har manglet observasjoner for en strøm, har forskerne derfor kunnet bruke observasjoner av de andre greinene og andre tidsperioder til å beregne hvor mye vann denne strømmen har ført. Alle måledata har en viss usikkerhet, som også kan tallfestes. Innenfor dette spennet kunne de justere hver strøm slik at det totale strømregnskapet gikk i null. 

De nordiske hav
Havstrømmene inn i og ut av de nordlige havområdene. De røde pilene er innstrømningen av varmt vann fra Atlanterhavet. Turkise piler er kaldere vann både inn og ut, og svarte piler utstrømningen i dypet. Pilenes tykkelse indikerer strømstyrken, målt i Sverdrup. Figur fra Tsubouchi et al., 2020. 

Varmeoverskuddet har økt

Varmeregnskapet går aldri opp. Overskuddsvarme fra tropene fordeles mot polene både gjennom havet og atmosfæren. Derfor er det naturlig at det strømmer mer varme inn i de nordlige havområdene enn ut av dem. Men de siste årene har overskuddet økt. 

Mellom 1998 og 2002 steg varmetransporten inn i de nordlige havområdene brått, og siden da har den holdt seg på et nivå som ligger sju prosent høyere enn på 1990-tallet. Overskuddet er stort nok til å forklare oppvarmingen av havet og har trolig også bidratt til å redusere sjøisdekket. 

Varmere vann og sterkere strøm bidro like mye til økningen i varmetransport. Hvor mye vann som strømmer inn, er imidlertid vanskeligere å beregne enn vannets temperatur, som måles direkte. Derfor er temperaturbidraget sikrere. 

Helt sikkert er det uansett at strømmen fra Atlanterhavet og inn i de nordiske hav ikke ble redusert i løpet av måleperioden. Den kan ha økt.

Ingen tegn til svekkelse av omveltningssirkulasjonen

Det meste av vannet som fraktes nordover fra Golfstrømmen, avkjøles, synker og returnerer sørover i dypet. Denne nedsynkningen er kritisk for å opprettholde omveltningssirkulasjonen i Nord-Atlanteren, som Golfstrømmen er en del av. 

Nedsynkningen foregår i tre hovedområder: Labradorhavet, Irmingerhavet og de nordiske hav. Historisk sett har Labradorhavet vært sett på som et hovedområde, men de siste årene har fokus falt på de nordiske hav. 

Klimamodeller indikerer at omveltningen vil bli redusert med 10–30 prosent innen utløpet av århundret hvis den globale oppvarmingen fortsetter. Det har vært diskutert om den sørlige delen av systemet, som vi forbinder med Golfstrømmen, allerede er redusert.

– Vi ser ingen tegn til noen svekkelse i nord, sier Kjetil Våge. – Resultatene våre tilsier at strømmen inn i de nordiske hav er robust. Utstrømningen sørover i dypet har heller ikke blitt svakere. 

Han påpeker at man foreløpig ikke kjenner koblingen mellom den sørlige og den nordlige delen av omveltningssirkulasjonen godt nok til å si noe om hvordan dette vil utvikle seg. 

– Mye spiller inn. Jeg vil ikke gjette, sier han.

Kjetil Våge
Kjetil Våge under et tokt utenfor kysten av Island i 2011. Foto: Sindre Skrede / UiB

Referanser

Tsubouchi, T., Våge, K., Hansen, B. et al. Increased ocean heat transport into the Nordic Seas and Arctic Ocean over the period 1993–2016Nat. Clim. Chang.(2020). https://doi.org/10.1038/s41558-020-00941-3

Østerhus, S. et al. (2019): Arctic Mediterranean exchanges: a consistent volume budget and trends in transports from two decades of observations. Ocean Sci., 15, 379–399, 2019

 

Da forrige istid tok slutt, smeltet breen som dekket Hardangerfjorden i stor fart – opptil 10 meter om dagen. Slutten av istiden her i Norge, ligner Grønland i dag.  

Ny havstrøm satt på kartet

Ny havstrøm satt på kartet Ellen Viste lør, 10/24/2020 - 13:36 Ny havstrøm satt på kartet Golfstrømmen har du hørt om. Island–Færøy-jeten har du garantert aldri hørt om. Denne havstrømmen er nemlig ny på kartet.

Det er ikke hver dag det kommer nye havstrømmer på verdenskartet. I en artikkel publisert i tidsskriftet Nature Communications i går presenterer forskere fra Bergen, USA og Færøyene en nyoppdaget dyphavsstrøm nord for Island og Færøyene.

Strømmen bringer tungt dypvann ut av de nordiske hav og er dermed en del av omveltningssirkulasjonen i Nord-Atlanteren, som vi ellers forbinder med Golfstrømmen i overflaten.

– En del av måledataene vi brukte var gamle, men ingen hadde lagt merke til denne strømmen, sier Stefanie Semper.

Hun er doktorgradsstipendiat ved Bjerknessenteret og Geofysisk institutt ved Universitetet i Bergen og har ledet arbeidet med å identifisere den nye strømmen.

Stefanie Semper
Stefanie Semper har identifisert Island–Færøy-jeten som en del av doktorgraden sin ved Bjerknessenteret og Geofysisk institutt ved UiB. Foto: Helene Asbjørnsen

En viktig strøm i et stort system

Golfstrømmen ble først trykket på et kart i 1786, på initiativ fra Benjamin Franklin. Kartet viser en elv i havet utenfor kysten av Nord-Amerika og østover mot Europa.

Lenge har man visst at Golfstrømmen inngår i en sløyfe der overflatevann strømmer nordover i Atlanterhavet, avkjøles og synker før det strømmer tilbake sørover i dyphavet. Gradvis er det blitt klart at områdene der vannet synker og snur er Labradorhavet, Irmingerhavet og de nordiske hav – en samlebetegnelse for Norskehavet, Grønlandshavet og Islandshavet.

Vann strømmer inn i de nordiske hav på begge sider av Island og fortsetter mot Polhavet og Barentshavet. Noe av vannet blir så kaldt og tungt at det synker og strømmer tilbake ut i Atlanterhavet gjennom Danmarkstredet og Færøybankkanalen, som ligger mellom Færøyene og Skottland. Derfra raser det nedover skråningen mot dypet av Atlanterhavet.

Men ennå er mye ukjent. Det har vært ulike teorier om hvor i de nordiske hav vannet synker og om hvilke veier det så følger ut i Atlanterhavet. Island–Færøy-jeten er det nyeste tilskuddet.

Nordic Seas
Havsirkulasjonen i de nordiske hav. Vann strømmer inn i overflaten på begge sider av Island (røde piler) og tilbake ut igjen i dypet (turkise piler). Den nye Island–Færøy-jeten er merket med "IFSJ". Ill. fra Huang et al., 2020.

Oppdaget at vannet strømmet motsatt vei

I 2011 var forskere fra Bergen på tokt ved Island. De lette etter kilden til Nordislandsjeten, undervannsstrømmen som bringer dypvann ut i Atlanterhavet på vestsiden av Island. Kjetil Våge, forsker ved Bjerknessenteret og Geofysisk institutt ved UiB, var med på toktet, som ble ledet av Bob Pickart fra Woods Hole Oceanographic Institution.

Havforskerne fulgte Nordislandsjeten oppstrøms mot et område nordøst for Island, der de antok den oppsto. Målingene viste at strømmen ganske riktig gradvis ble svakere. Men da de fortsatte videre langs kontinentalsokkelen, ble det igjen bevegelse i dypet under dem.

– Helt uventet så vi at det gikk en tydelig strøm østover, sier Kjetil Våge.

De begynte å danne seg et bilde av området nord for Island som et slags vannskille i havet, med vann som kom nordfra og delte seg i to strømmer: den velkjente Nordislandsjeten vestover mot Danmarkstredet og en ukjent strøm østover i retning av Færøyene.

Kjetil Våge
Kjetil Våge var med på toktet utenfor kysten av Island i 2011. Foto: Sindre Skrede / UiB

Samlet gamle og nye målinger

For å kunne finne ut om de hadde rett, fortsatte de å måle sørøstover langs kontinentalsokkelen. Men etter at de kom hjem, ble disse dataene liggende ubehandlet til Stefanie Semper begynte å analysere dem i fjor.

Færøyske forskere hadde merket seg at vann vestfra nådde nordsiden av Færøyene, men heller ikke de hadde utforsket fenomenet nærmere.

– Ingen av datasettene viste hele strømmen, sier Stefanie Semper. – Men sammen ga de oss muligheten til å trekke ut en sammenhengende historie.

Ved å sammenstille de færøyske dataene og toktmålingene fra 2011, kunne hun identifisere en kontinuerlig strøm ved 800–1000 meters dyp. Vannet strømmer fra nordsiden av Island, langs kontinentalsokkelen og rundt nordsiden av Færøyene, før det fortsetter ut i Atlanterhavet gjennom Færøybankkanalen.

Avslørt av fingeravtrykket

For å kunne kartlegge strømmen, så forskerne ikke bare på strømretningen, men også på selve vannet.

– Vannmassene har sine egne fingeravtrykk, sier Stefanie Semper.

Kombinasjonen av temperaturen og saltinnholdet i sjøvann gjør det mulig å skille vann med ulikt opphav. Sammen med strømmålingene, kunne de bruke disse egenskapene til å spore vannet bakover og videre innover i de nordiske hav.

Parallelt med utforskningen av den nye strømmen har forskere fra de samme institusjonene, sammen med kinesiske forskere, lett etter vannets kilde før det når Island. Også dette arbeidet ble publisert i går.

I denne studien viser forskerne at vannet i strømmen mot Færøyene har de samme egenskapene som vannet som strømmer vest for Island. De to havstrømmene har samme fingeravtrykk, et kjennetegn som kunne spores til det samme området i Grønlandshavet.

Sammen viser de to nye studiene at dypvann fra Grønlandshavet følger undervannsrygger sørover og deler seg i to når det møter kontinentalsokkelen på nordsiden av Island. Den ene greinen når Atlanterhavet gjennom Danmarkstredet, den andre gjennom Færøybankkanalen.

En jetstrøm i havet

Begrepet jetstrøm forbinder man vanligvis med konsentrerte bånd av sterk vind i atmosfæren. Når forskerne her bruker det om en strøm i havet, er det fordi strømmen minner om slike bånd. Men vann er tyngre å flytte enn luft, så i havet går alt saktere enn i atmosfæren.

Sammenlignet med luften i den polare jetstrømmen en mil over Atlanterhavet, som gjerne fyker 50 meter i sekundet, står vannet i Island-Færøy-jeten nesten i ro.

– Ti centimeter per sekund, sier Stefanie Semper. – Maksimalt femten. Likevel transporterer den omtrent like mye vann som alle elvene på jorden til sammen.

De nordiske hav er viktigere enn tidligere antatt

De nordiske hav har alltid vært viktig for norske havforskere, men de siste årene har området fått høyere prioritet også internasjonalt. Om man skal vite hvordan strømsystemet i Atlanterhavet påvirkes av klimaendringer, må man vite hvordan nedsynkningen i nord bidrar.

I den forbindelse har det vært fokusert mye på Golfstrømmen i den sørlige delen av sløyfen og på nedsynkningen i Labradorhavet, som har antatt er vel så viktig. Nyere funn har flyttet oppmerksomheten mot de nordiske hav.

Nå håper Stefanie Semper og kollegene å kunne se nærmere på hvordan vannet kommer fra Grønlandshavet til nordsiden av Island og på hvorfor strømmen deler seg der.

– Du tenker du svarer på et spørsmål, sier hun. – Nå har vi enda flere.

Referanser

Semper, S., Pickart, R.S., Våge, K. et al. The Iceland-Faroe Slope Jet: a conduit for dense water toward the Faroe Bank Channel overflow. Nat Commun 11, 5390 (2020).

Huang, J., Pickart, R.S., Huang, R.X. et al. Sources and upstream pathways of the densest overflow water in the Nordic Seas. Nat Commun 11, 5389 (2020).

En ny gjennomgang av hvor mye isen på Grønland og Antarktis bidrar til økt havnivå, viser at smeltevann fra iskappene kan bidra med et globalt gjennomsnitt på rundt 38 cm ved slutten av dette århundret, dersom utslippene holder fram som nå.  

– Det nye ved denne undersøkelsen er at vi nå klarer å fange flere usikkerheter, sier Heiko Goelzer, forsker ved NORCE og Bjerknessenteret.

Barentshavet har blitt eit dårlegare «kjøleskap»

Barentshavet har blitt eit dårlegare «kjøleskap» Anonymous (ikke bekreftet) man, 05/25/2020 - 10:01 Barentshavet har blitt eit dårlegare «kjøleskap» Vatnet som kjem inn i Barentshavet blir mindre nedkjølt enn før. Det har stor betydning for klimaet i området, og kan føre til at fisk og anna liv vil flytta på seg. 

Pressemelding fra Havforskningsinstituttet, av Stine Hommedal

Barentshavets klimasystem har blitt sett på som ei effektiv «nedkjølingsmaskin». 

Det varme vatnet som går nordover med Atlanterhavsstraumen har blitt kjapt nedkjølt når det kjem inn i Barentshavet, på grunn av varmetap til atmosfæren. 

– Denne nedkjølinga dempar temperaturvariasjonane i vatnet som kjem inn i Barentshavet, fortel HI- og Bjerknes-forskar Øystein Skagseth.  

Dempingsmekanismen har igjen ført til at vatnet som strøymer ut av Barentshavet, og blir ein del av den globale havsirkulasjonen, også har halde ein jamn, låg temperatur. 

Barentshavet på veg mot eit varmare havklima 

Forskarane har trudd at med varmare vatn og påfølgande mindre isdekke i Barentshavet, ville varmetapet til atmosfæren auka. Altså, at Barentshavet ville bli eit endå meir effektivt «kjøleskap». 

– Sidan 1990-talet har temperaturen på vatnet frå Atlanterhavet auka, og det har blitt mindre is, seier Skagseth. – Men meir effektivt «kjøleskap» har det ikkje blitt. Overraskande nok fann vi at den generelle nedkjølinga av atlanterhavsvatnet, på sin veg gjennom Barentshavet, har blitt redusert. Det kan skuldast meir varme, fuktige vindar frå sør, som totalt sett har ført til redusert avkjøling, forklarar HI-forskaren. 

Dette viser ei ny studie, gjort av forskarar frå HI og UiB ved Bjerknessenteret, som Skagseth har leia.  

Forskarane har undersøkt hydrografiske observasjonar frå tidsperioden 1971 til 2018.

Hydrografiske observasjonar er målingar av kjemiske og fysiske forhold i havvatnet, som eksempelvis saltinnhald, temperatur og sirkulasjon. 

 – Dersom denne tendensen held seg frametter, har vi fått ein mekanisme som vil driva Barentshavet mot eit generelt varmare havklima.

Store konsekvensar for fisk og livet i havet 

Eit varmare havklima vil få konsekvensar, både i Arktis og globalt. 

 – Eit eksempel er at dersom botnvatnet blir varmare, kan det påverka utbreiinga av enkelte fiskeartar, som torsk og hyse. Den produktive delen av økosystemet i Barentshavet kan forskyva seg austover, mot russisk sone, seier forskaren. 

Ein annan konsekvens kan få globale følger; I klimasystemet er Barentshavet ein viktig del av den globale havsirkulasjonen.

Når ein kombinerer ein varmare Atlanterhavsstraum med mindre nedkjøling, betyr det at vatnet som strøymer ut frå Barentshavet til Norskehavet og Polhavet har blitt mykje varmare – som igjen kan påverke straumar i havet langt utover Barentshavet.  

Må overvaka over lengre tid 

Skagseth understrekar at ein enno ikkje kan slå fast at havklimaet i Barentshavet har endra seg for godt. 

–  Jamfør global oppvarming, kan vi rimeleg sikkert gå ut frå at atlanterhavsvatnet vil bli varmare. Men det er usikkert korleis endringar i atmosfæren som stormbanar og dominerande vindretningar vil slå ut. I tillegg er det store naturlege variasjonar frå år til år, så difor må me følgje utviklinga over tid for å slå fast at det har skjedd eit endeleg skifte. 

– Men våre data over dei siste tjue åra, viser at Barentshavet er i endring, og går mot eit generelt varmare havklima.  

Referanse: 

Skagseth, Ø, Eldevik, T, Årthun, M, Asbjørnsen, H, Lien,VS, Smedsrud, LH (2020) Decreasing efficiency of the Barents Sea cooling machine. Nature Climate Change, DOI:10.1038/s41558-020-0772-6