Varmt i Arktis, men iskald vinter i Europa
30.05.2023, 13:19
Det nordlege Atlanterhavet er heim for det største varme- og karbonsluket i verda, og driver omveltningssirkulasjonen i det nordlige Atlanterhavet (AMOC), eit massivt system av straumar som flytter varme og næring rundt på kloden.
Men området er også under raske endringar, som ein regional nedkjøling som går på tvers av den globale varmetrenden, og ei mogleg svekking av AMOC som kan ha store konsekvensar for klimaet og økosystema.
For å betre forstå desse endringane og implikasjonane av desse har prosjektet DYNASOR (DYnamics of the North Atlantic Surface and Overturning ciRculation) blitt starta av eit lag av Bjerknes-forskarar ved Universitetet i Bergen, Havforskningsinstituttet, og NORCE Research Centre i Bergen.
– Den tiår gamle forestillinga av AMOC som "transportbandet" har kome under stadig nærare gransking etter kvart som viktigheita av overflatesirkulasjonen blir meir og meir tydeleg, seier Andreas Born, DYNASOR-prosjektleiar og professor ved UiB og Bjerknessenteret.
Prosjektet tek sikte på å utforske interaksjonen mellom den subpolare kvervel (subpolar gyre) og sørlege AMOC ved Grønland-Skottland-ryggen (GSR), i tillegg til utvekslinga av vannmasser over denne ryggen, både ved overflata og der vatnet renn over tersklane i djupet.
DYNASOR vil bruke en kombinasjon av dei fremste klimamodellane, paleoseanografiske rekonstruksjonar, og moderne hydrografiske observasjonar for å nå måla sine.
Berre slike tverrfaglege samarbeid gir data på tilstrekkeleg detaljnivå og tidsmessig dekning til å finne ut meir om variasjonane i havstrøymane på tidsskalaer over mange tiår.
Å forstå og forske på svakheitene i klimamodellar er ei viktig oppgåve, især for korleis variasjonane i djupet påverkar dei ulike laga av havet. Dette kan hjelpe til å forstå dei spesifikke grunnane for det observerte varmeholet i området.
Dette går hand i hand med det strategiske fokuset Bergen sitt forskingsmiljø har på området Nordishavet og dei nordiske hava, eit område som blir sterkt påverka av den nordatlantiske sirkulasjonen.
– DYNASOR trekker på tre kjerneverksemder i Bjerknessenteret: fysisk oseanografi, paleoklimarekonstruksjonar, og karbonsyklus-dynamikk, seier Born, som har ambisjonar om å setje dagsorden for forskingsområdet.
DYNASOR er eit av Bjerknessenterets fem strategiske prosjekt i perioden 2022-2025.
Under den siste istid har den storskala sirkulasjonen i Atlanterhavet (AMOC: Atlantic Meridional Overturning Circulation) vært knyttet til raske klimaendringer og arktisk sjøis. AMOC - dette store systemet av overflate- og dypstrømmer - bidrar til omfordeling av varme fra tropene til de høye nordlige breddegradene.
Med tanke på de pågående klimaendringene og rask tilbaketrekning av sjøis, er det avgjørende å forstå koblingene mellom havsirkulasjonen og arktisk sjøis.
I dag overvåkes sirkulasjonen i Atlanterhavet, spesielt over Golfstrømmen ved 26°N; men hva vet vi om den nordligste delen av havstrømmene når de nærmer seg kanten av sjøisen? I min avhandling vil jeg ta deg med til Arktis, til regionen der det varme atlantiske vannet møter det kalde arktiske klimaet, mister varmen sin og synker til havets dyp.
Anais Bretones (f. 1994) er oppvokst i Lyon, Frankrike, og har en mastergrad i fysisk oseanografi fra Universitet i Vest-Bretagne i Brest. I 2017 påbegynte hun doktorgraden i klimadynamikk ved Institutt for Geovitenskap, Universitetet i Bergen, og har i denne perioden også vært tilknyttet Bjerknessenteret for klimaforskning.
Veilederne under doktorgradsarbeidet har vært professor Kerim H. Nisancioglu og postdoktor Mari F. Jensen.
I noen områder i verden er det nå mulig å varsle klimaendringer opp til ti år på forhånd.
Det er for eksempel mulig å varsle hvorvidt vi forventer at de neste årene skal bli spesielt varme og nedbørsrike. Slik informasjon om nedbørsmengder og temperatur er for viktig flere næringer og beslutningstakere, inkludert fiskerinæringen, kraftselskap og jordbruksnæringen.
Subpolare strøk i Nord-Atlanteren er et av de områdene som peker seg ut med høyest forutsigbarhet eller prediktabilitet. Dette området har også en betydelig påvirkning på klimaet over Vest-Europa.
Passos har brukt den norske klimavarslingsmodellen og observasjoner for å undersøke tre ulike aspekter: hvordan ulike metoder for dataassimilering (hvordan observasjoner blir tatt opp i en modell) påvirker prediksjonsevnen i Nord-Atlanteren og Arktis regionen, forholdet mellom forskjellige fysiske mekanismer som gir prediktabilitet på lengre tidsskala (fra tiår til tiår), samt hvordan dataassimilering i havet forbedrer varsling av klimaet i Europa.
Funnene i doktorgradsoppgaven bygger opp under utviklingen av dynamiske varslingssystemer og bidrar til å gjøre dem operasjonelle i nær framtid.
Leilane Passos (f. 1985) er født og oppvokst i Vitória, Brazil, og har en mastergrad i i Fysisk Oseanografi fra Universitetet i São Paulo.
I 2019 påbegynte hun doktorgraden i klimadynamikk ved Geofysisk Institutt, Universitetet i Bergen, og har i denne perioden også vært tilknyttet Bjerknessenteret for klimaforskning. Veilederne under doktorgradsarbeidet har vært Helene R. Langehaug (NERSC), Marius Årthun (UiB), og Tor Eldvik (UiB).
Flo og fjære styres av månen og solen. Ved fullmåne og nymåne står jorden, solen og månen på linje, og det blir springflo. På toppen av det astronomiske tidevannet kommer været. Sterk vind kan stuve sjøen inn mot land, og når lufttrykket er lavt, står vannet høyere.
En ny studie tar for seg hendelsene med høyest flo 21 steder ved norskekysten de siste tretti årene. I de fleste tilfellene oppsto høyvannet mens det var ekstrem springflo og uvær som bidro moderat, eller motsatt, under moderat høyt tidevann kombinert med ekstreme bidrag fra lavtrykk og vind.
Kun i et fåtall av tilfellene skyldtes den høye vannstanden både ekstrem springflo og ekstrem oppstuving fra lavtrykk og vind.
– Dette åpner for en mulighet for høyere vannstand, sier Stephen Outten, forsker ved Bjerknessenteret for klimaforskning og Nansen Senter for Miljø og Fjernmåling.
Hvis tidevannstoppen ved springflo sammenfaller med ekstremt vær, vil sjøen kunne stige høyere enn den har gjort. Outten understreker at resultatene er basert på observasjoner av tidevannet til nå. Forskerne har ikke vurdert om trange sund eller andre lokale forhold ville hindre vannet i å strømme inn i fjorder og bukter.
I Bergen har sjøen to ganger i løpet av disse tre tiårene stått høyere enn det statistisk sett vil gjøre én gang hvert tusenår. Dette skjedde 11. februar 2020 samt 27. februar 1990, med den høyeste vannstanden noensinne registrert i Bergen.
– Tusenårsnivået ble riktignok bare overskredet med henholdsvis én og to centimeter, presiserer Tobias Wolf, som ledet denne forskningen mens han var ansatt ved Bjerknessenteret for klimaforskning og Nansen Senter for Miljø og Fjernmåling.
Grensen for plassering av sykehus, skoler og andre viktige bygg er satt ved en vannstand som i gjennomsnitt ventes å opptre en gang hvert tusende år. Da er også havstigning knyttet til klimaendringer tatt med i beregningen.
Wolf T, Outten S, Mangini F, Chen L and Nilsen JEØ (2023), Analysis of storm surge events along the Norwegian coast. Front. Earth Sci. 11:1037826. doi: 10.3389/feart.2023.1037826
Isbreer beveger seg og isdynamikken kontrolleres av mange prosesser. En av disse prosessene er snøsmelting om sommeren på toppen av isbreene. Smeltevannet kan renne ned gjennom sprekker i isen og påvirker hvordan isen glir på underlaget. En bedre forståelse av denne prosessen er viktig for å forutsi hvordan isbreer kommer til å respondere på fremtidig klima, siden smeltevannsproduksjonen forventes å øke i fremtiden.
For å forstå hvordan smeltevann påvirker breenes bevegelser over lange tidsskalaer, utarbeidet vi i denne avhandlingen isbevegelseshastighetskart for alle breene i sørvest-Grønland for perioden 2000-2019. Tidligere studier har vist at gjennomsnittsbevegelsen i disse breene har bremset opp mellom 2000 og 2012, og kartene våre bekrefter dette. For perioden 2012-2019 viser noen studier at breene akselererer igjen. Sistnevnte støttes ikke av våre resultater. Årsaken er at tidligere studier har brukt hele regionens gjennomsnittshastighet (tilsvarer et datapunkt per år), mens vi i denne avhandlingen har sporet ishastigheten på individuelle 150-kvadratmeters piksler (millioner av datapunkter per år). Vi viser at denne mer detaljerte fremgangsmåten er nødvendig fordi isbevegelsen ikke er uniform innenfor isdekket.
Videre viser vår studie at det er viktig å sørge for at bildene som hastighetskartene baseres på, er tatt i samme periode hvert år, for å oppnå tall som er sammenlignbare fra år til år. Sammenhengen mellom produksjon av overflatesmeltevann og ishastigheter ble også undersøkt, ved å kombinere hastighetskartene med klimareanalyser. Vi viser at ishastighet ikke varierer lineært med smeltevannsavrenning, men at ishastigheten først stiger, så synker, og deretter stiger igjen med økende avrenning. Det er ikke tidligere påvist at høy smeltevannsproduksjon kan føre til høyere ishastigheter. I vår studie analyserte vi bare en liten del av kartdatasettet i detalj. Ishastighetskartene for årene 1984 til 2020 for sørvest-Grønland er åpent tilgjengelige.
Paul Halas ble født i 1995 i Frankrike. Han studerte hydrogeologi og bærekraftig utvikling ved Ecole Nationale Supérieure en Environnement, Géoressources et Ingénierie du Développement durable (ENSEGID) i Bordeaux. Han begynte doktorgraden i 2019 ved Institutt for Geovitenskap, Universitet i Bergen, under veiledning av Basile de Fleurian, Jérémie Mouginot og Petra Langebroek. Han studerer fjernmåling for isdynamikk.
30.05.2023, 13:19
22.05.2023, 13:14
17.03.2023, 12:55
De siste 120 årene har overflatetemperaturen i Nord-Atlanteren svingt opp og ned i perioder på noen tiår. Havet var varmere i 1930–1965 og etter 1995, kaldere i 1900–1930 og 1965–1995. Tilsvarende skift kan spores i været i landene rundt Atlanterhavet.
At temperaturen har gått opp og ned flere ganger, antyder at det finnes naturlige mekanismer som får Atlanterhavet til å svinge. Men fort går det ikke.
Måledataene tilsier at det går seksti til åtti år fra en varmeperiode til den neste. Derfor er måleserien for kort til å avkrefte at det dreier seg om tilfeldige sammenfall eller til å finne årsaken til at temperaturen svinger.
– Skyldes det vulkaner, spør François Counillon. – Solen? Variasjoner i havsirkulasjonen eller bare tilfeldigheter? Vi trenger en lengre periode med data for å skjønne hva som foregår.
Som forsker ved Nansen senter for miljø og fjernmåling, leder Counillon Bjerknessenterets nye satsning på modellering av fortidens klima. Sammen med kolleger vil han bruke en klimamodell til å simulere klimaet på jorden, ikke fremover, men for det siste tusenåret. Tusen år er lenge nok til at man kan utforske svingninger som den i Nord-Atlanteren.
Lange simuleringer av fortidsklimaet finnes fra før. Også materialer fra havbunnen har gitt innsikt i hvordan klimaet har variert. Det nye er at begge typer data skal kobles. Bjerknes-forskerne vil la gamle skjell og koraller styre en klimamodell.
En klimamodell er en forenklet fremstilling av virkeligheten, en digital klode der geografien og klimaet er mest mulig likt jordens. Man kan sette modellen i gang og se hvordan hav, luft, isbreer og regnskog utvikler seg under gitte forutsetninger.
Sammenlignet med observasjoner, har modeller den fordelen at de gir deg hele verden, også forhold det ikke finnes målinger av. Fysikken i vind og havstrømmer er som i virkeligheten. Derfor kan modellen gi informasjon om havstrømmer i Atlanterhavet for tusen år siden – uten at vikingene senket et eneste måleinstrument i sjøen.
Ulempen med modeller er at de kan komme skjevt ut. Modellen trenger ikke å gjøre noe galt, men små avvik kan vri utviklingen i en annen retning. Historiens gang – også i vær og havstrømmer – var bare ett av flere mulige utfall.
Oftest begynner en klimasimulering bra, med et modellklima som er som i virkeligheten. Men etter å ha kjørt en stund, kan modellen ta en annen retning, som en hest som får gå fritt over et jorde. Det er ingenting i veien med hesten, men innimellom må rytteren sørge for at de kommer frem til rett sted.
– Det er som i et kryss der man kan ta til høyre eller venstre, sier François Counillon. – Vi vil forsikre oss om at modellen alltid velger riktig retning. Historiske data skal fungere som et kompass.
Fordelen med simuleringer av fortiden er at vi vet hva som skjedde. Observasjoner fra gammel tid skal lede modellen inn på rett avkjørsel. Også det er gjort før, men i den nye tusenårssimuleringen skal François Counillon og kollegene stramme tømmene.
Klimamodellen skal aldri få galoppere vilt. Virkelighetens klima skal få den på riktig kurs før den kommer langt.
Metoden kalles dataassimilering og innebærer å samle all tilgjengelig informasjon om klimaet til enhver tid. Det fullstendige bildet brukes til å korrigere modellen før man kjører videre. Slik sikrer man et virkelighetsnært klima gjennom hele det tusenåret simuleringen skal dekke.
Måledata finnes kun for et hundreår eller to. Fortidens havtemperatur må rekonstrueres. Til dette kan fortidsklimaforskerne bruke stoffer i skjell, i koraller og i fossiler i sedimentene på havbunnen.
Dette er indirekte klimaindikatorer eller såkalte stedfortrederdata – ikke direkte målinger av klimaet, men av egenskaper som ble påvirket av klimaet da organismene levde. Ved å måle dem, kan man utlede om det har vært varmt eller kaldt, tørt eller vått.
Utvalget er begrenset sammenlignet med moderne måledata, men slår man sammen all tilgjengelig informasjon, er grunnlaget godt nok til å holde modellen i tømmene.
Selv om temperatursvingningen i Nord-Atlanteren bare er observert i et drøyt hundreår, kommer den tydelig frem i simuleringer som allerede er gjort. I klimamodellene knyttes den til variasjoner i den store omveltningssirkulasjonen som Golfstrømmen er en del av.
I den nye tusenårssimuleringen, der skjell og koraller binder modellen til virkeligheten, vil fremstillingen av Nord-Atlanterens klima være mer realistisk enn i tidligere simuleringer.
François Counillon og kollegene vil finne ut om temperaturen i Nord-Atlanteren på lang sikt påvirkes av vulkanutbrudd, av variasjoner i havstrømmer og av hvor mye solstråling jorden og havet mottar. I tillegg vil de utforske hvordan temperatur og havstrømmer i Atlanterhavet samvirker med fenomener som El niño i Stillehavet.
– Med en bedre forståelse av hva som driver variasjonene i havet, håper vi å kunne forbedre klimavarslene for fremtiden, sier François Counillon.
– Hvis kysten er bratt og steinete, kan havet stige en meter uten at det gjør noe, sier Kristin Richter.
Forskeren fra NORCE og Bjerknessenteret deltar i Bjerknessenterets nye satsning på havnivåberegninger.
Hvis verdens kontinenter var avgrenset av høye klipper, ville centimeter vært en enhet uten betydning. I realiteten gjør hver millimeter havstigning en forskjell et eller annet sted i verden.
Målet med den nye satsningen er mer detaljerte scenarioer for hvor høyt vannet vil stå langs kysten av Nord-Europa og i Arktis. Da må man ta hensyn både til vann og til land.
Siden begynnelsen av 1990-tallet har det globale havnivået steget mer enn tre centimeter per tiår. Smeltevann fra breer har gitt verdenshavene påfyll, men en stor del av stigningen skyldes at havet er blitt varmere. Varmere vann tar større plass.
Når vannet i dyphavet varmes opp, stiger overflaten av det åpne havet, og vann renner mot verdens kontinenter. Men nøyaktig hvordan endringene i dypet vil forplante seg innover mot land, vet man ennå ikke.
– Havet kan komme til å stige mer når det kommer inn over sokkelen, sier Antonio Bonaduce, forsker ved Nansensenteret og Bjerknessenteret. – Effekten av havbunnen er foreløpig for lite utforsket.
Kyststrømmer og bunnforhold styrer vannet når det nærmer seg kysten. Til sammen kan slike effekter slå ut i ulik retning på ulike steder. Konsekvensene kan også variere over tid.
Havet stiger ikke jevnt langs verdens kystlinjer. Når breis smelter på Grønland, havner mer smeltevann i tropiske hav enn i nord. Det skyldes at istapet gjør Grønland mindre og lettere, med svakere gravitasjonskraft. At vannet utvider seg mest der sjøen varmes mest opp, skaper også forskjeller. Slike effekter tar klimamodellene allerede hensyn til.
Men selve kysten har man så langt ikke tatt med i betraktningen. Med den nye satsningen vil forskerne inkludere både vann og land.
Klimamodeller med mer detaljerte bunnforhold og kystlandskap er blant verktøyene forskerne vil bruke for å beregne havstigning mer nøyaktig. I tillegg skal geologer vurdere grunnforholdene der vannet treffer land.
– Også kysten kan endre seg, sier Antonio Bonaduce.
Land stiger eller synker. Sedimenter vaskes ut. En vinterstorm kan rive med seg en sandstrand. Kystlinjen er i evig forandring, og hvor langt innover land vannet vil nå, avhenger både av hvor mye havet stiger og av endringer på land.
– På steder der det er flatt på land, bør fem centimeter fra eller til bry oss, sier Kristin Richter.
Korleis fann eigentleg nokon på å studere isen på Grønland for å lære om klimaet? "Det er ei forteljing om sære idear, regnvatn, eventyrlege ekspedisjonar, og frykta for atomkrig," skriv forskar Anne Katrine Faber, om Grønlandsforskinga sin spede start på 50-talet. I dag er det ein sentral stad for mange av våre arktiske prosjekt.
The East Greenland Ice-core Project, eller EastGRIP, er ein base der hovudarbeidet går på å borre iskjerner ut av verdas raskaste isstraum. Dette for å sanke ny viten om korleis isstraumane oppfører seg og bidreg til framtidig havnivåstigning, samt ei god kjelde til kunnskap om fortidsklimaet tilbake til forrige istid.
Få ei 360 graders omvisning på EastGRIP med denne videoen:
Forskarane hentar opp iskjerner dypt nede frå isstraumen. Dette gjer dei ved å grave ut store tunneler under isen.
Sjølve tunnelsystemet blir laga ved å fresa ut djupe grøftar i isen, deretter blir store ballongar blåse opp før dei blir dekt av snø. Når snøen er fast igjen, blir lufta sloppen ut av ballongen. Ballongane lager nyttige strukturar, ventilasjonsrør blir innstallert og djupe renner må til for å skape eit perfekt miljø for boring.
Gjennom forskingsprosjektet ice2ice frå 2014-2019 har forskarar ved Universitetet i Bergen bidratt til å sikre gode klimaarkiv frå isen på Grønland i form av fleire tusen meter djupe iskjerner.
I løpet av fire år klarte forskarane å bore seg 2700 meter ned gjennom isen. Det tilsaman gir eit klimaarkiv på over 100 000 år.
Innelukka i iskjernene frå djupet finnes luftbobler som fortel om lufttemperaturen då isen fall som snø på toppen mange tusen år tilbake i tid. I 2019 fikk også ein legofigur vere med på reisa. Les meir her.
Kva skjer frå snøen fell på toppen av isen til den blir lagra som is nedover i isbreen? Dette spørsmålet er viktig å ha kontroll på når ein skal bruke iskjerner som eit klimaarkiv.
Dette spørsmålet er sentralt i SNOWISO-prosjektet som er leia av Hans Christian Steen-Larsen. Saman med kollegaer vil dei samle over fem tusen prøvar frå snøoverflata for å finne koblingar mellom målingane i atmosfæren og klimasignalet i snøen.
3. juni 2022 kan du høyre den velrennomerte forskaren Fiamma Straneo halde ope foredrag om koblinga mellom havstraumer og Grønlandsisen. Straneo er ven av det bergenske klima- og havforskingsmiljøet og er tidligare medlem av Bjerknessenterets vitskapelege råd.
2. juni vert ho utnemd som æresdoktor ved UiB, ope gjesteforelesing er på Vilvite på fredag 3. juni kl. 11.
Store skip krysser havområder som før lå utilgjengelige under isen. Ikke bare er det blitt flere fiskebåter, men også tankskip og cruiseskip. Ifølge en rapport fra Arktisk råd økte den tilbakelagte distansen i Arktis 75 prosent fra 2013 til 2019.
Satellittbilder og iskart hjelper kapteinene med å finne farbare ruter. Kartene viser hvilke områder som er dekket med is og hvor sammenpakket isen er. Det de ikke sier noe om, er morgendagen.
Sjøis kan vokse opptil ti centimeter i døgnet, og is kan sprekke opp og drive langt på kort tid. I ung is glir lagene over hverandre, mens eldre is stuver seg opp når den presses sammen. Satellittbilder kan verken vise hvor tykk isen er, hvor den vil drive eller om det vil dannes ny is der vannet var åpent da bildene ble tatt.
Datamodeller som beregner isdekket i dagene fremover, finnes. Prinsippene er de samme som brukes for å varsle morgendagens vær. Men isens bevegelser er komplekse, og retningen kan endres på bare hundre meter. Foreløpig er isvarsling på forskningsstadiet.
– Modellene gir brukbar informasjon sju dager frem i tid, men er fremdeles ikke pålitelige nok til å navigere etter, sier Tarkan Bilge.
Han er overingeniør ved Bjerknessenteret og Universitetet i Bergen og har ledet en studie av isvarslingsmodeller. I studien sammenlignet forskerne isvarslene fra fire modeller med observasjoner av isen i Barentshavet.
Når Tarkan Bilge ikke vil anbefale noen å stake ut kursen etter dagens isvarsler, er det ikke fordi de normalt ikke treffer. I gjennomsnitt kan modellene forutsi sjøistykkelsen en uke fremover ganske godt. Men enkelte dager blir det helbom.
I islagte farvann er rutevalg et spørsmål om liv og helse. Da holder det ikke å vite at overfarten i gjennomsnitt vil gå bra.
– Jeg tipper det vil gå tre-fire år, så er vi der, sier Laurent Bertino. – Det er lite sammenlignet med de tjue årene vi har jobbet med dette.
Bertino er seniorforsker ved Bjerknessenteret og Nansensenteret. Gruppen hans har drevet en isvarslingsmodell siden 2003, og siden 2008 har også Meteorologisk institutt vært involvert i arbeidet.
De siste sju årene har de norske isvarslingsforskerne hatt ansvar for å levere offisielle isvarsler for Arktis, som en del av EUs jordobservasjonsprogram, Copernicus.
Den nye studien var den første som sammenlignet slike varsler med målt istykkelse nær iskanten i Barentshavet. Dataene kom fra målebøyer satt ut i forbindelse med utredning av petroleumsvirksomhet og er ikke offentlig tilgjengelige.
Slike måledata direkte fra havet er ifølge Laurent Bertino uunnværlige hvis isvarslene skal kunne bli bedre. Satellittbilder viser hvor isen ligger, men selv om noen av dem også kan måle istykkelse, er slike data foreløpig usikre. Å sammenligne gamle varsler med observasjoner, er heller ikke nok.
Modellsimuleringene må starte fra det best mulige utgangspunktet, med best mulig oversikt over forholdene akkurat nå. Alt som finnes av observasjoner, må samles og inkluderes fra starten av. Metoder for å kombinere data på denne måten, kalt dataassimilering, er et viktig forskningsfelt både for ismodeller og andre vær- og klimamodeller.
I denne podkasten forteller isforsker Anton Korosov ved Bjerknessenteret og Nansensenteret mer om isvarsler og om hvordan nye måter å utnytte satellittdata på kan forbedre dem.
– De som bruker isvarsler i dag, bruker dem for å unngå isen, sier Laurent Bertino.
Kapteiner som skal operere inne i områder med pakkis, trenger varsler som tar hensyn til drivende isfjell og is som slår milelange sprekker og driver mot andre områder. I dagens varsler plasseres iskanten med en usikkerhet på rundt 50 kilometer.
Med en kombinasjon av nye satellitter, en ny sjøismodell og nye måter å sammenstille alle dataene på, har Laurent Bertino tro på at ventetiden på mer nøyaktige varsler ikke vil bli for lang.
– Jeg er optimist, sier han.
Bilge, Tarkan A., Nicolas Fournier, Davi Mignac, Laura Hume-Wright, Laurent Bertino, Timothy Williams, and Steffen Tietsche. 2022. An Evaluation of the Performance of Sea Ice Thickness Forecasts to Support Arctic Marine Transport Journal of Marine Science and Engineering 10, no. 2: 265. https://doi.org/10.3390/jmse10020265
I en hangar i Kiruna står tre fly klare til å ta av. Rundt 140 forskere, flygere og teknikere har kommet til byen for å håndtere dem. Fra Ny-Ålesund på Svalbard skal fjernstyrte ballonger drive sørover over Norskehavet, der forskningsskipet Helmer Hanssen er på vei mot Øst-Grønland.
På Jan Mayen, Bjørnøya, Andenes og helt sør til Ålesund står folk klare til å ta vannprøver hvis det skulle begynne å snø eller regne akkurat der. Slik skal de holde på i tre og en halv uke.
Alt dette for noen dråper vann. Og ja, det er helt vanlig vann.
Det uvanlige ligger i rollen vannet er tiltenkt. Måledata fra vannets ferd skal vise hva som har mest å si for hvor mye det regner og snør. Da vil man også få vite hvordan værvarslingsmodeller bør programmeres for å gi de best mulige varslene av skyer og nedbør.
– Nå er nesten alt på plass, sier Harald Sodemann, professor ved Bjerknessenteret og Geofysisk institutt ved Universitetet i Bergen.
Han leder én av tre forskergrupper som skal være i Kiruna, med ansvar for det ene flyet. At alle tre skal dit samtidig, skyldes tilfeldigheter, men med et felles mål om å utforske atmosfæren kan de hjelpe hverandre.
Fire dager før avreise har han det fremdeles travelt med pakking og organisering, men han har fått tid til å begynne å tenke på været.
– Drømmeværet er et kaldluftsutbrudd, sier Harald Sodemann. – Og det får vi.
Han ser fornøyd på et værkart på dataskjermen sin. Kartet viser et lavtrykk ved iskanten sørvest for Svalbard den første uken.
Under slike forhold krysser kald luft fra det isdekte Polhavet iskanten og strømmer sørover over åpne områder av Grønlands- og Norskehavet – et utbrudd av kald luft fra isen og utover havet. Polarluften er tørr, og når den kommer ut over åpent hav, tar den opp mengder av fuktighet fra sjøvannet. Sterk vind skaper ekstra stor fordampning, og den fuktige luften driver videre mot norskekysten.
Når luften fra nord og nordvest treffer land og stiger mot fjellene, kan det oppstå kraftige snøbyger. Slikt vær forbindes med mengder av snø i kystområdene i Nord-Norge og med ising på skip. I ekstreme tilfeller kan det gjøre stor skade – i seg selv en god grunn til å forske på slikt vær.
I dette tilfellet er det en annen grunn til at akkurat dette været er valgt.
At luften som strømmer fra isen er kald, er ikke i seg selv så viktig. Det som betyr noe for Harald Sodemann og de andre forskerne, er at denne luften inneholder så lite vann.
– Fordi luften er tørr så lenge den strømmer over isen, vet vi at alt vannet som senere faller ned over Norge, kommer fra havet, sier han.
Ved et kaldluftsutbrudd kan forskerne følge de samme vannmolekylene hele veien – fra de fordamper fra havet, mens de kondenserer til vanndråper og fryser til is i skyene og til de lander i nedbørmålere eller legger seg som snø på bakken.
De må bare klare å fange dem.
– Vi skal reise dit vannet fordamper og følge dette vannet videre, sier Harald Sodemann. – Da må vi ha et flygende laboratorium.
Flyet som skal følge vannets reise, tilhører Frankrikes nasjonale forskningssenter, CNRS. Det er spesielt godt egnet til å fly inne i skyer og er utstyrt med instrumenter som registrerer ørsmå detaljer i skyene. Blant annet kan de telle skydråper, skille mellom is og vann og fryse ut vanndamp fra luften.
Tre personer skal til enhver tid følge med på værvarslene. Flyet skal sendes til havområder der det varsles høy fordampning. Med spesielle modeller skal forskerne beregne hvor luften og vanndampen så vil bevege seg.
– Hvis vann fordamper ved iskanten og 24 timer senere skal være ved Bjørnøya, sender vi flyet til Bjørnøya, sier Harald Sodemann. – Etter 48 timer er vannet et annet sted, og da sender vi flyet dit.
Slik skal de følge vannet.
Observatører i Longyearbyen, på Bjørnøya, på Jan Mayen, på Andenes, i Abisko, i Kiruna og så langt sør som i Ålesund står klare til å fange opp vannet når det lander. Hvis værvarslene tilsier at akkurat dette vannet vil regne eller snø ned et sted mellom Andøya og Kiruna, setter forskerne seg i bilen og kjører dit.
Mens fly tar av og lander i Kiruna, skal seks ballonger sendes opp fra forskningsstasjonen i Ny-Ålesund på Svalbard. Ballongene vil bevege seg opp og ned i de nederste tre kilometerne over havet, fjernstyrt fra USA. På vei sørover vil de samle inn data som viser hvordan fuktig luft fra havet blander seg med tørrere luft lengre oppe, også det viktig for å vite hva som har skjedd med skyvannet som når norskekysten.
Ved å studere hvordan vann sirkulerer i naturen, håper Harald Sodemann å kunne forbedre måten dette fremstilles på i værvarslingsmodeller. Da skal modellene kunne beregne nedbør mer nøyaktig.
– Ofte oppstår værsituasjoner der vi ikke helt skjønner hvordan en modell kommer frem til et bestemt resultat, sier han.
En viss mengde regn kan skyldes at en viss mengde vann har fordampet fra havet. Men hvis overgangen fra vanndamp til vanndråper har vært mer effektiv, kan den samme nedbørmengden ha krevd mindre vanndamp. Med bare vanlige værobservasjoner er det umulig å vite hva som er den egentlige årsaken.
For å finne ut det, trenger de prøver av selve vannet og av vanndampen i luften. Vanlig vann inneholder flere isotoper – ulike varianter av vannmolekyler – som tungtvann og flere former for halvtungt vann, i tillegg til det vi må kunne kalle helt vanlig vann.
Alle disse isotopene forekommer naturlig i en vanndråpe. Men hvor mye vann av hver variant en vanndråpe inneholder, avhenger av hva vannet har gått gjennom.
Derfor kan Harald Sodemann og forskerne hans bruke vannprøver til å si noe om forholdene i havet der vannet fordampet, og om hva som har skjedd med vannet i luften og i skyene. Slik kan de skille virkningen av ulike forhold på regnet eller snøen som faller.
Forbedringene de håper å kunne gjøre i modellene, vil ikke være begrenset til kaldluftsutbrudd. Hovedgrunnen til å velge slikt vær for målekampanjen, er at hele reisen fra vannet fordamper til det igjen når bakken, er unnagjort på to-tre dager.
Om de skulle gjort noe tilsvarende for lavtrykkene som kommer sørfra mot Norge over Atlanterhavet, ville de måtte overvåke luften over et mye større område i minst en uke.
– Da ville vi trengt mange flere fly, sier Harald Sodemann.
Når fly og forskere forlater Kiruna like før påske, gjenstår fremdeles noe målearbeid. Det skal påsketurister i Nord-Norge få ta seg av. Forskerne vil be skifolk om å hjelpe dem med å samle inn snø de kan ta prøver av.
Skal du på påsketur? Les mer om hvordan du kan bli med på denne folkeforskningen her.
24.01.2022, 14:35
30.09.2021, 12:54
– Dette er fantastiske nyheiter!, seier direktør for Bjerknessenteret Tore Furevik.
– Dette viser at vi er lengst framme i landet på klima- og polarforsking, som lovar godt for fortsetjinga til Bjerknessenteret. Det er kjekt å sjå at det også er yngre forskarar blant prosjektleiarane.
I tildelinga for Stort, tverrfaglig prosjekt fikk professor Kerim Nisancioglu ved Institutt for geovitenskap og Bjerknessenteret eitt av tre prosjekt. Prosjektet er et tverrfaglig samarbeid over fleire fakultet på Universitetet i Bergen, blant annet med professor Eamon O'Kane ved Fakultet for Kunst, Musikk og Design, men også SV- og HF-fakultetet.
– Det er jo radikalt tverrfaglig! Sentralt i prosjektet er det å utveksle erfaringar gjennom kunst, å forklare, skrive og teikne klimafortellinger med barn og unge på Grønland og i Stillehavet. Vi skal forstå og lære av dei som bur og lever med det i dag, endringane som er der allereie. Vi lærer av dei, det er det som er viktig, seier Nisancioglu.
Sju prosjekt er tildelt pengar for Forskerprosjekt
I tillegg fekk fire prosjekt pengar gjennom FRIPRO, Forskingsrådets utdeling for banebrytande forsking:
16.06.2021, 10:08
07.06.2021, 15:01
20.05.2021, 16:26
18.05.2021, 11:48