Understanding climate
for the benefit of society

Publications 2021

Bjerknes scientists are indicated in bold.


Asbjørnsen, H., Johnson, H. L., Årthun, M. (2021): Variable Nordic Seas inflow linked to shifts in North Atlantic circulation, Journal of Climate, 34(17), 7057-7071, https://doi.org/10.1175/JCLI-D-20-0917.1

Bakke, J., Paasche, Ø., Schaefer, J. et al. Long-term demise of sub-Antarctic glaciers modulated by the Southern Hemisphere Westerlies. Sci Rep 11, 8361 (2021). https://doi.org/10.1038/s41598-021-87317-5

Ban, N., Caillaud, C., Coppola, E. et al. including Sobolowski, S.,Lorenz, T. (2021):The first multi-model ensemble of regional climate simulations at kilometer-scale resolution, part I: evaluation of precipitation. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05708-w

Berends, C. J., Goelzer, H., and van de Wal, R. S. W (2021).: The Utrecht Finite Volume Ice-Sheet Model: UFEMISM (version 1.0), Geosci. Model Dev., 2021, 1-32, https://doi.org/10.5194/gmd-14-2443-2021

Bradshaw, C.D., Langebroek, P.M., Lear, C.H. et al. (2021): Hydrological impact of Middle Miocene Antarctic ice-free areas coupled to deep ocean temperatures. Nat. Geosci. (2021). https://doi.org/10.1038/s41561-021-00745-w

Brovkin, V. et al including Seddon, Alistair W. R. (2021):. Past abrupt changes, tipping points and cascading impacts in the Earth system. Nature Geoscience, https://doi.org/10.1038/s41561-021-00790-5

Carter, B. R., R. A. Feely, S. K. Lauvset, A. Olsen, T. DeVries, and R. Sonnerup (2021), Preformed Properties for Marine Organic Matter and Carbonate Mineral Cycling Quantification, Global Biogeochemical Cycles, 35(1), e2020GB006623, https://doi.org/10.1029/2020GB006623

Chandler, D.M., Wadham,J.L., Nienow, P.W., Doyle, S.H., Tedstone, A.J., Telling, J., Hawkings, J., Alcock, J.D., Linhoff, B., Hubbard, A. (2021): Rapid development and persistence of efficient subglacial drainage under 900 m-thick ice in Greenland, Earth and Planetary Science Letters, ISSN 0012-821X, https://doi.org/10.1016/j.epsl.2021.116982.

Chandra, A., and S. Kumar (2021): Sea Surface Temperature and Ocean Heat Content during Tropical Cyclones Pam (2015) and Winston (2016) in the Southwest Pacific Region. Monthly Weather Review, 149, 1173-1187. DOI: https://doi.org/10.1175/MWR-D-20-0025.1

Dai, G., Zhang, Z., Otterå, O. H., Langebroek, P. M., Yan, Q., & Zhang, R. (2021). A modeling study of the tripole pattern of East China precipitation over the past 425 ka. Journal of Geophysical Research: Atmospheres, 126, e2020JD033513. https://doi. org/10.1029/2020JD033513

Dunn‐Sigouin, E., Li, C., & Kushner, P. J. (2021). Limited influence of localized tropical sea‐surface temperatures on moisture transport into the Arctic. Geophysical Research Letters, 48, e2020GL091540. https://doi.org/10.1029/2020GL091540

Edwards, T., et al including Goelzer, H. (2021): Projected land ice contributions to 21st century sea level rise. Nature, https://doi.org/10.1038/s41586-021-03302-y, 2021.

Eidhammer, T., Booth, A., Decker, S., Li, L., Barlage, M., Gochis, D., Rasmussen, R., Melvold, K., Nesje, A., and Sobolowski, S.(2021) : Mass balance and hydrological modeling of the Hardangerjøkulen ice cap in south-central Norway, Hydrol. Earth Syst. Sci., 25, 4275–4297, https://doi.org/10.5194/hess-25-4275-2021

Elsheikh B. A., Skjelvan,I., Omar, A.M., Olsen,A., de Lange, T.E., Johannessen, T., Elageed, S. (2021): Sea surface pCO2 variability and air-sea CO2 exchange in the coastal Sudanese Red Sea, Regional Studies in Marine Science, 44,101796, ISSN 2352-4855, https://doi.org/10.1016/j.rsma.2021.101796.

Gowan, E.J., Zhang, X., Khosravi, S. et al. including Hughes, A., (2021): A new global ice sheet reconstruction for the past 80 000 years. Nat Commun 12, 1199 ,https://doi.org/10.1038/s41467-021-21469-w

Grant C. Pitcher et al. including Salvanes, A.G.V. (2021): System controls of coastal and open ocean oxygen depletion, Progress in Oceanography,102613, ISSN 0079-6611, https://doi.org/10.1016/j.pocean.2021.102613.

Guttu, S.; Orsolini, Y.; Stordal, F.; Otterå, O.H.; Omrani, N.-E.; Tartaglione, N.; Verronen, P.T.; Rodger, C.J.; Clilverd, M.A. (2021): Impacts of UV Irradiance and Medium-Energy Electron Precipitation on the North Atlantic Oscillation during the 11-Year Solar Cycle. Atmosphere 2021, 12, 1029. https://doi.org/10.3390/ atmos12081029

Gya, R, Bjune, AE. (2021):Taking practical learning in STEM education home: Examples from do‐it‐yourself experiments in plant biology. Ecol vol. ; 00: 1– 7. https://doi.org/10.1002/ece3.7207

Hall SB, Subrahmanyam B, Nyadjro ES, Samuelsen A. (2021):Surface Freshwater Fluxes in the Arctic and Subarctic Seas during Contrasting Years of High and Low Summer Sea Ice Extent. Remote Sensing.13(8):1570. https://doi.org/10.3390/rs13081570

Haualand, K. F. and Spengler, T.(2021): Relative importance of tropopause structure and diabatic heating for baroclinic instability, Weather Clim. Dynam., 2, 695–712, https://doi.org/10.5194/wcd-2-695-2021

Heinze, C., Blenckner, Martins, H ,Rusiecka, D. Döscher, R., Gehlen, M., Gruber, N., Holland, E., Hov, Ø., Joos, F., Brian, J. Matthews, R., Rødven, R.,Simon Wilson, S.(2020): The quiet crossing of ocean tipping points, PNAS, DOI: 10.1073/pnas.2008478118

Jones, C. D., Hickman, J. E., Rumbold, S. T., Walton, J., Lamboll, R. D., Skeie, R. B., et al. including Tjiputra, J. (2021). The climate response to emissions reductions due to COVID‐19: Initial results from CovidMIP. Geophysical Research Letters, 48, e2020GL091883. https://doi.org/10.1029/2020GL091883

Kageyama, M. et al including Guo, C.,Nisancioglu, K H, Zhang, Z; (2021): A multi-model CMIP6-PMIP4 study of Arctic sea ice at 127 ka: sea ice data compilation and model differences. Clim. Past, 17, 37–62, https://doi.org/10.5194/cp-17-37-2021

Koseki, S., Mooney, P. A., Cabos, W., Gaertner, M. Á., de la Vara, A., and González-Alemán, J.-J., (2021): Modelling a tropical-like cyclone in the Mediterranean Sea under present and warmer climate. Nat. Hazards Earth Syst. Sci., 21, 53-71, https://doi.org/10.5194/nhess-21-53-2021

Koul, V., Sguotti, C., Årthun, M. et al. Skilful prediction of cod stocks in the North and Barents Sea a decade in advance. Commun Earth Environ 2, 140 (2021). https://doi.org/10.1038/s43247-021-00207-6

Le Bras, I., Straneo, F., Muilwijk,M., Smedsrud, L.H., Li, F.M. Lozier, S.,, and Holliday, N.P.(2021): "How much Arctic fresh water participates in the subpolar overturning circulation?." Journal of Physical Oceanography (2021). https://doi.org/10.1175/JPO-D-20-0240.1

Lee, H. ,Muri, H., Ekici, A.,Tjiputra, J. and Schwinger, J.(2021):The response of terrestrial ecosystem carbon cycling under different aerosol-based radiation management geoengineering, Earth Syst. Dynam., 12, 313–326, https://doi.org/10.5194/esd-12-313-2021

Lima L.L., Gherardi D.F.M., Pezzi L.P., Passos L.G., Endo C.A.K and Quimbayo, J.P. (2021):Potential changes in the connectivity of marine protected areas driven by extreme ocean warming. Sci Rep 11, 10339 (2021). https://doi.org/10.1038/s41598-021-89192-6

Liu, X. Tvinnereim, E., Grimsrud,K.M., Lindhjem, H., Velle, L.G., Saure , H.I.,& Lee, H. (2021) Explaining landscape preference heterogeneity using machine learning-based survey analysis, Landscape Research, DOI: 10.1080/01426397.2020.1867713

Lunt, D.J. et al including Zhang, Z. and Langebroek, P. M.(2021): DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data, Clim. Past, 17, 203–227, https://doi.org/10.5194/cp-17-203-2021, 2021.

McMichael, C. N. H., Witteveen, N. H., Scholz, S., Zwier, M., Prins, M. A., Lougheed, B. C., Mother, P., Gosling, W. D. (2021). 30,000 years of landscape and vegetation dynamics in a mid-elevation Andean valley. Quaternary Science Reviews, 258, 106866. https://doi.org/10.1016/j.quascirev.2021.106866

Mooney P.A. , Li. L. (2021): Near future changes to rain-on-snow events in Norway, Environ. Res. Lett. in press. https://doi.org/10.1088/1748-9326/abfdeb

Mottl, O., Flantua, S.G.A., Bhatta, K.P., Felde, V.A., Giesecke, T., Goring, S., Grimm, E.C., Haberle, S., Hooghiemstra, H., Ivory, S., Kuneš, P., Wolters, S., Seddon, A.W.R., Williams, J.W. (2021) Global acceleration in rates of vegetation change over the last 18,000 years. Science. 372 (6544): 860-864, DOI: 10.1126/science.abg1685

Mottl, O, Grytnes, J-A., Seddon, A.W.R., Steinbauer, M.J.,Bhatta, K.P.,Felde, V.A., Flantua, S, G.A. Birks, H.J.B. (2021): Rate-of-change analysis in paleoecology revisited: A new approach, Review of Palaeobotany and Palynology, Volume 293, 2021, 104483, ISSN 0034-6667, https://doi.org/10.1016/j.revpalbo.2021.104483.

Mangini, F, Chafik, L.,Madonna, E., Li, C., Bertino, L. & Nilsen, J.E.Ø. (2021) The relationship between the eddy-driven jet stream and northern European sea level variability, Tellus A: Dynamic Meteorology and Oceanography, 73:1, 1-15, DOI: 10.1080/16000870.2021.1886419

Morée, A. L., Sun, T., Bretones, A., Straume, E. O., Nisancioglu, K., & Gebbie, G. (2021). Cancellation of the precessional cycle in δ18O records during the Early Pleistocene. Geophysical Research Letters, 48. https://doi.org/10.1029/2020GL090035

Morée, A. L., Schwinger, J., Ninnemann, U. S., Jeltsch-Thömmes, A., Bethke, I., and Heinze, C.(2021): Evaluating the biological pump efficiency of the Last Glacial Maximum ocean using δ13C, Clim. Past, 17, 753–774, https://doi.org/10.5194/cp-17-753-2021, 2021.

Mulder, T. E., Goelzer, H., Wubs, F. W., and Dijkstra, H. A. (2021): Snowball Earth Bifurcations in a Fully-Implicit Earth System Model, International Journal of Bifurcation and Chaos, 31, https://doi.org/10.1142/S0218127421300172

Nnamchi, H.C., Latif, M., Keenlyside, N.S. et al. (2021): Diabatic heating governs the seasonality of the Atlantic Niño. Nat Commun 12, 376. https://doi.org/10.1038/s41467-020-20452-1

Nogué, S. et al including Birks, J.B. and Felde, V. (2021): The human dimension of biodiversity changes on islands, Science, 372, 6541,488-491, DOI: 10.1126/science.abd6706

Omar, A.M., García-Ibáñez, M.,I., Schaap, A., Oleynik, A., Esposito, M., Jeansson, E., Loucaides, S., Thomas,H., Alendal, G. (2021): Detection and quantification of CO2 seepage in seawater using the stoichiometric Cseep method: Results from a recent subsea CO2 release experiment in the North Sea, International Journal of Greenhouse Gas Control, https://doi.org/10.1016/j.ijggc.2021.103310.

Outten S. and S. Sobolowski (2021): Extreme wind projections over Europe from the Euro-CORDEX regional climate models, Weather and Climate Extremes, 33, 100363, doi:10.1016/j.wace.2021.100363

Payne, A. J., Nowicki, S., Abe-Ouchi, A., Agosta, C., Alexander, P., Albrecht, T., et al including Goelzer, H. (2021):. (2021). Future sea level change under coupled model intercomparison project phase 5 and phase 6 scenarios from the Greenland and Antarctic ice sheets. Geophysical Research Letters, 48, e2020GL091741. https://doi.org/10.1029/2020GL091741

Pichelli, E., Coppola, E., Sobolowski, S. et al. including Lorenz, T. (2021):The first multi-model ensemble of regional climate simulations at kilometer-scale resolution part 2: historical and future simulations of precipitation. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05657-4

Plach, A., Vinther, B. M., Nisancioglu, K. H., Vudayagiri, S., and Blunier, T.(2021): Greenland climate simulations show high Eemian surface melt which could explain reduced total air content in ice cores, Clim. Past, 17, 317–330, https://doi.org/10.5194/cp-17-317-2021.

Roberts EM, Bowers DG, Meyer HK, Samuelsen A, Rapp HT, Cárdenas P (2021) :Water masses constrain the distribution of deep-sea sponges in the North Atlantic Ocean and Nordic Seas. Mar Ecol Prog Ser 659:75-96. https://doi.org/10.3354/meps13570

Robson, T.M. Bernhard, G.H., Bais, A.F.,Seddon, A.W.R, Barnes, P.W. (2021): Floral bullseyes and stratospheric ozone, Current Biology, https://doi.org/10.1016/j.cub.2021.06.019

Sandø, A.B., Mousing, E.A., Budgell, W.P ,Hjøllo, S.S., Skogen, M.D., Ådlandsvik, B. (2021): Barents Sea plankton production and controlling factors in a fluctuating climate, ICES Journal of Marine Science, https://doi.org/10.1093/icesjms/fsab067

Seddon, A.W.R.(2021): Special feature: measuring components of ecological resilience in long-term ecological datasets, Biology Letters 17: 20200881. https://doi.org/10.1098/rsbl.2020.0881

Seddon, A.W.R., Festi, D., Nieuwkerk, M., Gya, R., Krüger, L.C., Östman, S.A.H., Robson, T.M. P (2021):Pollen-chemistry variations along elevation gradients and their implications for a proxy for UV-B radiation in the plant-fossil record. Journal of Ecology, 2021 DOI: 10.1111/1365-2745.13720

Seidenglanz, A., Athanasiadis, P., Ruggieri, P. et al. including Li, C. (2021)Pacific circulation response to eastern Arctic sea ice reduction in seasonal forecast simulations. Clim Dyn (2021). https://doi.org/10.1007/s00382-021-05830-9

Solomon, A., Heuzé, C., Rabe, B., Bacon, S., Bertino, L., Heimbach, P., Inoue, J., Iovino, D., Mottram, R., Zhang, X., Aksenov, Y., McAdam, R., Nguyen, A., Raj, R. P., and Tang, H.(2021): Freshwater in the Arctic Ocean 2010–2019, Ocea.,n Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021

Siew, P. Y. F., C. Li, M. Ting, S. P. Sobolowski, Y. Wu, X. Chen (2021): North Atlantic Oscillation in winter is largely insensitive to autumn Barents-Kara sea ice variability. Sci. Adv. 7, eabg4893 ,https://advances.sciencemag.org/content/7/31/eabg4893

Spensberger, C., M. J. Reeder, T. Spengler, and M. Patterson, 2020: The connection between the Southern Annular Mode and a feature-based perspective on Southern Hemisphere mid- latitude winter variability J. Clim., 33, 115-129, doi: 10.1175/JCLI-D-19-0224.1

Spensberger, C., & Spengler, T. (2021): Sensitivity of air‐sea heat exchange in cold‐air outbreaks to model resolution and sea‐ice distribution. Journal of Geophysical Research: Atmospheres, 126, e2020JD033610. https://doi.org/10.1029/2020JD033610

Starr, A., Hall, I.R., Barker, S. et al. including Simon, M.H. (2020): Antarctic icebergs reorganize ocean circulation during Pleistocene glacials. Nature 589, 236–241. https://doi.org/10.1038/s41586-020-03094-7

Sulpis, O., Jeansson, E., Dinauer, A. et al. (2021): Calcium carbonate dissolution patterns in the ocean. Nat. Geosci. https://doi.org/10.1038/s41561-021-00743-y

Tangunan, D. et al. including Simon, M.H (2021): Strong glacial-interglacial variability in upper ocean hydrodynamics, biogeochemistry, and productivity in the southern Indian Ocean. Commun Earth Environ 2, 80 (2021). https://doi.org/10.1038/s43247-021-00148-0

Terhaar, J., Torres, O., Bourgeois, T., and Kwiatkowski, L. (2021): Arctic Ocean acidification over the 21st century co-driven by anthropogenic carbon increases and freshening in the CMIP6 model ensemble, Biogeosciences, 18, 2221–2240, https://doi.org/10.5194/bg-18-2221-2021

van der Bilt, W.G.M., Barr, I.D., Berben, S.M.P. et al including Bakke, J. (2021): Late Holocene canyon-carving floods in northern Iceland were smaller than previously reported. Commun Earth Environ 2, 86 (2021). https://doi.org/10.1038/s43247-021-00152-4

van der Bilt W.G. M., Cederstrøm J.M., Støren E. W. N., Berben S. M. P., Rutledal S.(2021): Rapid Tephra Identification in Geological Archives With Computed Tomography: Experimental Results and Natural Applications, Frontiers in Earth Science , 8 ,DOI=10.3389/feart.2020.622386

Wahl, S., Steen‐Larsen, H. C., Reuder, J., & Hörhold, M. (2021): Quantifying the Stable Water Isotopologue Exchange between Snow Surface and Lower Atmosphere by Direct Flux Measurements. Journal of Geophysical Research: Atmospheres, 1–24. https://doi.org/10.1029/2020jd034400

Liu, X. Tvinnereim, E., Grimsrud,K.M., Lindhjem, H., Velle, L.G., Saure , H.I.,& Lee, H. (2021) Explaining landscape preference heterogeneity using machine learning-based survey analysis, Landscape Research, DOI: 10.1080/01426397.2020.1867713

Zika, J. D., Gregory, J. M., McDonagh, E. L., Marzocchi, A., & Clément, L. (2021): Recent Water Mass Changes Reveal Mechanisms of Ocean Warming, Journal of Climate, 34(9), 3461-3479. Retrieved May 5, 2021, doi: https://doi.org/10.1175/JCLI-D-20-0355.1

Zhao, Y. et al including Birks, J.B. (2021): Temperature reconstructions for the last 1.74-Ma on the eastern Tibetan Plateau based on a novel pollen-based quantitative method, Global and Planetary Change, 199, https://doi.org/10.1016/j.gloplacha.2021.103433